Math 323 - Formal Mathematical Reasoning and Writing Problem Session Wednesday, 1/28/15

Warm Up:

- 1. Define the terms **even** and **odd**.
- 2. Define the statements $\mathbf{a} < \mathbf{b}$ and $\mathbf{a} > \mathbf{b}$.

Practice Problems:

Write up solutions for the following problems in the same amount of detail you would use in a homework assignment.

- 1. Prove that for every integer x, if x is odd then x^3 is odd.
- 2. Describe in one or two sentences how you would show that the following statement is false.

For every integer a, if a is even then $a^3 - 1$ is even.

3. Decide whether the following statement is true or false. If the statement is true, prove it. If the statement is false, give a counterexample to show that it is false.

If p < 0 and mp < np then n < m.

(First: Can you prove (or disprove) this statement with the theorems discussed in class? What modification(s) should we make to the statement before our theorems apply?)

- 4. ¹Decide whether the following statements are true or false. If the statement is true, prove it. If the statement is false, give a counterexample to show that it is false.
 - (a) For all integers x, y, if xy > 0 then $x^2 + y^2 > 0$.
 - (b) For all integers x, y, if $x^2 + y^2 > 0$ then xy > 0.

From Problem Set 2:

PS2 #5 Decide whether the following statement is true or false:

If $a, b, c, d \in \mathbb{Z}$ and a < c and b < d, then ac < bd.

If the statement is true, prove it. If the statement is false, give a counterexample to show that it is false, and then come up with a revision of the statement that is true, and prove it.

PS2 #6 Mathematical Virtue Do you have ideas about how to prove #6 on Problem Set 2? What are the examples of multiplous and non-multiplous sets that you have come up with?

¹One of these is easy. The other one is hard.